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at the carbons are greater. The thione bond is un-
symmetrically oriented with respect to the adjacent
carbon bonds. This could arise either from repulsion
by the methyl group in the same molecule or by a
sulfur atom in an adjacent molecule at a distance of
329 A (S,-S;, IV, in Table 9).

The spatial arrangement of the molecules is shown
in Fig. 4. It consists of rows extending in the b-axis
direction with the plane of the molecules in adjacent
rows tilted with respect to the a-axis in such a way
as to form a herringbone-like pattern when projected
onto the z—z plane. This is a common form of packing
for small planar organic molecules with weak inter-
molecular forces.

The non-bonding intramolecular distances are shown
in Table 8 and the intermolecular distances shorter
than 5 A are given in Table 9. These distances were
computed using an IBM 650 program prepared by
Templeton (1957).

The authors wish to thank Prof. Ray Pepinsky for
the use of X-RAC, Mr R. Shiono for the IBM 650
differential synthesis and structure factor calculations,
and Dr Blaine B. Wescott, Executive Vice President,
Gulf Research & Development Company for per-
mission to publish this paper.
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1. Introduction

In high speed computers with large memories, the storage
of atomic scattering factors presents little difficulty. If
100-160 values of the scattering factor for each atomic
species, at 0-006 intervals in sin 6/4, can be stored, simple
table-searching without interpolation yields the desired
functions with 1% accuracy (Sparks, Prosen, Kruse &
Trueblood, 1956). Greater accuracy is obtained by inter-

*  Address,
Pasadena, Calif.

1958: California Institute of Technology,

polation in tables of f versus sin? 6 (Ahmed & Cruick-
shank, 1953; Lavine & Rollett, 1956; Rollett, 1957):
in this case, 48 to 100 values are stored for each atomic
species, adequate accuracy being achieved by linear
interpolation even in the 48-values tables if the intervals
of tabulation are chosen so as to make successive incre-
ments in f approximately equal.

In other computers, a limited memory makes the
storage of entire f-tables an impossibility. To this class
belongs SILLIAC (the Sydney University version of the
University of Illinois Automatic Computer), which at
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present handles many crystallographic calculations for
Australia and New Zealand (Freeman, 1957, 1958). The
present SILLIAC store can hold 1024 40-bit words;
even though a magnetic-tape backing-store is available,
it is desirable that our codes take a maximum advantage
of the immediate-access property of the fast memory,
however limited it may be. For this reason the problem
of representing atomic scattering factor curves in a con-
densed form has been investigated.

2. Choice of function

The idea of seeking an analytical representation of atomic
scattering functions is not new. Vand, Eiland & Pepinsky
have recently (1957) published tables of the constants
a, b, A and B for the expression

f(0) = A exp (—ax?)+B exp (—ba?) (x = sin 9),

which is valid within the Cu Ko-range. Even before this,
Mayer (1953; cf. Sparks, Prosen, Kruse & Trueblood,
1956) explored the use of polynomial series but rejected
them as ‘not significantly faster than table-searching and
- appreciably less convenient unless the problem of
storage room is critical’. We were originally—and in-
dependently of these (then unpublished) observations—
attracted to the use of the polynomial representation of
atomic form-factors by the following considerations:

(@) The required polynomial -coefficients can be
evaluated directly from the published scattering curves
by standard routines available in most computer-
liberaries.

(6) The calculation of f(6) as a polynomial series is
achieved by a particularly simple ‘loop’ in the program,
if it is coded as

fo) = Ao +a1x+-ayx?+ . . . Fapx®
= ayt+x(a;+2(a,. .. +2(an)...)) .

(¢) A number of test-cases, using sixth degree poly-
nomials in z = sin /24, indicated an accuracy better
than 1% within the Cu Kx-range.

3. Method of computation

The fitting of the tabulated f;(8) by the ‘best’ polynormnial
of the form f(6) = Xa,(sin §/21)" becomes a least-
n

squares problem, if the criterion of excellence is made the
minimization of X[f(6)—f:(0)]2 with respect to arbitrary
variations of the coefficients a,. We are able to solve this
problem by means of two standard computer-routines
(SILLIAC Codes K3 and L7). The first of these reads
8 list of values of sin §/21 followed by a list of the cor-
responding f(6), and produces the n x (n+1) matrix of
the least-squares normal equations. The output-tape from
this code becomes the input for the next one, which
solves the simultaneous linear equations for the a,.
For the sake of convenience we have coded short auxiliary
programs to tabulate and to test the sets of coefficients.

In general we have found that the published f(6)-
values at 0-05 intervals in sin /4 are adequate data for
the fitting of the polynomials. For the elements from
hydrogen through beryllium the curves were plotted and
twice this number of points of observation were used.
The f-curves of Viervoll & Ogrim (1949) are published
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at intervals of 0-0796 in sin 6/4, and for these curves we
have also found it necessary to read additional points
from plotted curves.

The choice of sin /24 for the variable in these poly-
nomials has been made for reasons of scaling, since the
quantity sin 6/24 < 1/24 is fractional for all likely values
of A.

4. Results

Our coefficients for those of the lighter elements, for which
there exist scattering curves calculated from electron-
distributions taking account of exchange, are listed in
Table 1. Table 2 contains coefficients for curves calculated
without exchange. We have not included our coefficients
for the form-factors for heavier atoms recently recal-
culated by Thomas & Umeda (1957) since the restriction
to the Cu K«-range becomes serious for calculations in-
volving the heavier atoms. (Our own crystal-structure
programs use these coefficients scaled down by 108,
Copies of the complete tables on this scale are available.)

5. Adequacy

The criterion of fit used by Vand, Eiland & Pepinsky
(1957) for their two-term Gaussian representation of
atomic scattering factors was a standard deviation,
o = (Z(4f)2)}/mt, where m was the number of tabulated
values to which the function was fitted. This standard
deviation, when expressed as a percentage of N, the
number of electrons associated with an atom or ion, was
usually smaller than unity.

We have adopted the same criterion for the curves
calculated in the present work. The values of ¢ and o/N
are included in Tables 1 and 2. In only one case (Li,
6/N = 0:97%) does the percentage standard deviation
exceed 0:56%. An equally close fit is obtained for the
Thomas-Umeda f-curves: some representative values
illustrate this.

Z =N ¢ 0[N (%)
29 0-027 0-09
46 0-033 0-07
53 0-034 0-06
77 0-037 0-05

On the other hand, the fact that ¢/N is smaller than
1% is no guarantee that deviations greater than 1%, of
S(8) do not occur over parts of the curve: this is shown
by the values of fearpon from the paper of Vand et al.
(1957), which we have reproduced in Table 8 for compar-
ison with the tabulated values and with the values cal-
culated by the sixth-degree polynomial approximation,

To the adequacy-criterion represented by ¢/N we have
therefore added the qualification that |fug.— Jtablfian
shall nowhere along the curve exceed 1%. All the poly-
nomials for which the coefficients are listed in Tables 1
and 2 have been tested at the data-values of 6. For repre-
sentative curves, intermediate values of f(0) were also
calculated and were compared with values interpolated
graphically in the published functions: the deviations at
these intermediate points were nowhere significantly
greater than those at the data-points. The following
cases are the only ones where deviations of more than
1% of f(0) occurred: (The figures in parenthesis show the
greatest deviation expressed first in terms of electrons
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Table 1. Polynomial coefficients for atomic scattering factors of light elements (with exchange)

ag
H —5699-0
He +3135-0
Li —46616-0
Be —75408-0
B —58217-0
C —26924-0
N —3433-0
(6] +6115-0
F +309-0
F- —37735-0
Ne +10776-0
Na —48450-0
Mgtt —217-0
Sidt+ +391-0
Cl— —102448-0
A —16480-0
K+ +20076-0
Ca —99390-0
Cut 4132240
Table 2.
Qg
Mg —69841-0
Aldt+ + 84-0
Al —26710-0
Si —75917-0
P —128692:0
S —94339-0
Cl —75806-0
K +27256-0
Se +54454-0
Ti +43895-0
v +46652-0
Cr2t +2741-0
Cr —7594-0
Zn ~105337-0
Ga —110598-0
Ge —138666-0
As —170146-0
Rb*t —39618-0
sin G/ A
0-00
0-05
010
0-15
0-20
0-25
0-30
0-35
0-40
0-50
0-60
0-70

as
-+ 81337
—2909-5
+50394-1
+-87981-7
+ 718134
+38145-9
+11253-4
—666-0
+5138-7
+48543-1
—8096-3
+50327-9
—925-5
~—-975-1
+132204-9
+35861-1
—10519-8
+108430-9
— 103856

B Berghuis et al. (1955).

ay
—4551-3
+610-9
—20094-8
—39064-4
—34444-5
—21321-1
—9881-7
—4242-3
—6373-2
—25195-5
+102-3
—19824-9
+490-4
+560-9
—67109-0
—26722-1
—4339-5
—46225-0
+54-9

ag ay ay
+1225-52 —145-08 +0-878
+173-40 —72-96 +0-244
+3495-03 —209-14 —11-596
+8014-30 —684-18 —0-119
-+ 7862-05 —780-81 +4-473
+5756-99 —686-38 +5-072
+3647-05 —551-57 +3-562
+2469-09 —466-40 +2-593
+2842:01 —505-30 +3-015
+6595-76 —807-11 +1-422
+1385-46 —3879-39 +1-399
+3814-54 —366-94 —13-214
+238-18 —156-31 +0-339
+30-53 —89-51 +0-178
+16445-35 —1791-71 +9-485
+8905-00 —1256-56 +9-464
+3982:16 —820-86 +5-154
+9756-96 —950-26 —23-825
+2165-92 —673-75 +25-282

I Ibers (1957).

)
4+ 1-000
—+1-999
+3-032
4+ 3-998
+4-998
+ 5:996
+ 6-996
+ 7997
-+ 8-997
+10-001
+9-998
+11-014
+9-999
+10-000
+17-995
+17-991
+17-994
+20-031
+27-999

[
0-003
0-001
0-029
0-020
0-005
0-006
0-007
0-009
0:005
0-005
0-006
0-003
0-003
0-001
0-007
0-017
0-015
0-061
0-005

M McWeeny (1951).

o[N (%)
0-30
0:05
0-97
0-50
0-10
0-10
0-10
0-11
0-06
0-05
0-06
0-03
0-03
0-01
0-03
0-10
0-08
0-30
0-02

Polynomial coefficients for atomic scattering factors of light elements (without exchange)

as

+-81247-2
—1023-8
+33656-4
~+90560-6
+159337-2
+121360-0
+103854-3
—21729-6
—62794-5
—48869-3
—51300-1
+3547-5
+17896-9
+121536-7
+125995-5
+156368-9
+197704-9
—+-66201-4

ay

— 357247
—+551-0
—15562-3
—40383-0
—74656-0
—60042-4
—55084-1
+3006-5
+27139-2
—+20267-1
+20912-4
—17230-8
—13514-3
—55120-5
—55808-0
— 677838
—88729-7
—42101-3

B Berghuis et al. (1955).

ag ap a

+7299-30 —643-18 —15-069
-+ 149-60 —129-69 +0-423
+3122:12 —191-73 —39-383
-+ 8014-88 —572-88 —38-033
+16072:77 —1436:16 —9:682
+13874:37 -—1344-56 —10-814
+13771-70 —1469-53 —3-224
+1396:10 —323-88 —39-820
—5458-07 +618-08 —95-488
-—3900-60 +465-93 —94-032
—3895-37 +440-59 —93-630
+3876-27 —1792-73 +4-125
+4456-65 —549-66 —49-790
+12577-83 —1440-98 —0452
+12220-31 —1314-12 —12-117
+14171-60 —1396-41 —18:359
+19191-41 —1943-88 +0-576
+12731-50 —1751-41 +12-446

Q Qurashi (1954).

Qg
+12:033
-+ 10-000
+13-012
+ 14-034
+15-042
+15-991
+16-985
+18-990
+21.017
+22-013
+23-015
+21-997
+24-017
-+ 30-008
+31-015
+32-023
-+ 33-009
+35-989

Table 3. Tabulated and calculated values of f(6) for carbon
: 6th degree polynomial

f (tabulated) f (calculated)

6-000
5-764
5-141
4-362
3-612
3-:003
2-538
2-212
1-983
1-707
1-548
1-423

2-term Gaussian

3
0-048
0-001
0-032
0-043
0-051
0-035
0-038
0-027
0-048
0-045
0-049
0:007
0-039
0-022
0:034
0-049
0-030
0:021

V Viervoll & Ogrim (1949).

o/N (%)
0-40
0-01
0-25
0-31
0-34
0-22
0-22
0-14
0-23
0-20
0-21
0-03
0-16
0-07
011
015
0-09
0-06

821

Ref.

oo levlovRevReclecleclve Neo Nl Moo R ve fos Rl vol oo B3

Ref.

WHHWHEH<HOooOo 44t

6-000
5-781
5-188
4-403
3-618
2-969
2-501
2-196
2-002
1-762
1-574
1-384

af
0-000
0-017
0-047
0-041
0-006
0:034
0-037
0-016
0-019
0-055
0-026
0-039

and then as a fraction of f(f) at the corresponding point

of the curve).

Table 1: Li(0-02, 2%), Be(0-04, 3%).
Table 2: Mg(0-01, 1-8%), A1(0-07, 1-2%), Si(0-08, 1-2%),
P(0-08, 1-2%), V(0-1, 1-1%).

(Af1f) % [ (calculated) af Af1H %
0-0 5:996 0-004 0-1
0-3 5:776 0-012 0-2
0-9 5131 0-010 0-2
0-9 4-355 0-007 0-2
0-0 3:619 0-007 0-2
11 3-006 0-003 01
1-5 2-539 0-001 0-0
0-7 2-208 0-004 0-2
1-0 1981 0-002 0-1
3-2 1-711 0-004 0-2
1.7 1-548 0-000 0-0
27 1-427 0-004 03

Trial calculations have shown that no significant
advantage is gained within the Cu Ku-range from the
use of polynomials of degrees higher than the sixth. At
values of sin §/4 > 0-7 the polynomials diverge wildly
from the tabulated functions.
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On the determination of intermolecular vectors in molecular crystals by a modified Patterson
function. By E. Gierio, A. M. Liquort and A. RipamonTI, Istituto di Chimica Generale dell’ Universitd di Bari,

ITtaly

(Recetved 20 June 1958)

The localization of the molecules in the unit cell after
their orientation has been approximately established is
one of the main difficulties involved in the application
of the Fourier-transform method in the preliminary
stages of a structure determination. If the Fourier trans-
form T4 (S) of each molecule at

S = ha*+kb*Lic* (1)

is supposed to be known to a certain degree of accuracy,
the problem reduces to determine the Ry vectors ap-
pearing in the structure amplitude expressed as

F(S) = 3 Tu(S)exp {2ntS.Ry}, (2)
o
where
u(S) = X fn.exp {2mS .1y} (3)
Ry =Xya+Yyb+Zyc (4)

are vectors from the origin of the unit cell to a reference
point in the Mth molecule, and

ry, = 2za+yzb+2,cC (5)

are vectors from the reference points in the molecule to
the nth atom.

In the special case when all the molecules have the
same orientation either in space or in projection, (2) may
be written as

F(S) =1T(8).A(S), (6)
where
A(S) = 3 exp {2niS.Rp} . (7)
M

The Ry vectors may then be obtained (Booth, 1948) as
those quantities which satisfy relation (6). On the basis
of relation (6), Taylor (1954) has developed a method for
determining the R’s which may also be applied to cases
where the molecules have not necessarily the same
orientation. However, Taylor’s method, though interest-

ing, has several limitations in its practical application,
the most restrictive one being due to the inaccuracy with
which the quantities 4(S) may be obtained.

A modification of the Booth-Taylor method, ap-
plicable to centrosymmetric molecules, has been suggested
by Liquori & Ripamonti (1956) which overcomes the
above difficulty. However, the solutions are not always
unique, especially when the number of independent
molecules is larger than two. A similar method has been
more recently proposed by Taylor (1957).

It is obvious that in view of the poor accuracy of the
A(S) values, the efficiency of a method of determining
the Ry vectors should increase with increasing the
number of A(S) which can be used. The automatic
averaging which would result should in part reduce both
the number of false solutions and the inaccuracy of the
true solutions. The above consideration suggests that a
suitable modified Patterson function would lend itself
to this purpose. In fact, it is a common observation that
the Patterson projection of a structure containing groups
of atoms arranged in centro-symmetric regular assemblies
in the unit cell does contain maxima corresponding to
vectors between centers of such assemblies (Patterson,
1949). However, it is usually difficult to recognize these
maxima when the unit cell contains a large number of
atoms.

It may be shown that it is possible to enhance the
maxima corresponding to intermolecular vectors with
respect to those corresponding to interatomic vectors by
a suitable modification of the vector functions.

An idealized structure will be considered here consisting
of identical atoms and located at the centers of the
molecules. If the Fourier transform of the molecule is
calculated taking its center as origin, the electron-density
distribution of the idealized structurc is:

eR) = :—,2 G(S) exp {27iS.R}, (8)
S

where



